Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
Answer:
It is expressed as a multiple of one-twelfth the mass of the carbon-12 atom, 1.992646547 × 10−23 gram, which is assigned an atomic mass of 12 units. ... In this scale 1 atomic mass unit (amu) corresponds to 1.660539040 × 10−24 gram.
Answer:
K = 2.96x10⁻¹⁰
Explanation:
Based on the initial reaction:
N2O4 ⇄ 2NO2; K = 1.5x10³
Using Hess's law, we can multiply this reaction changing K:
3 times this reaction:
3N2O4 ⇄ 6NO2; K = (1.5x10³)³ =3.375x10⁹
The inverse reaction has a K of:
6NO2 ⇄ 3N2O4 K = 1/3.375x10⁹;
<h3>K = 2.96x10⁻¹⁰</h3>
In normal conditions, warm water does "pile up" in the" Western Pacific Ocean.