Answer:
Molarity is a sort of concentration for solutions. When you talk about it, means mols of solute, that are in 1000 ml of solution. The molarity at this is 0.57M
Explanation:
As you have the solution in a volume of 150ml with 5 g of solute, in 1000 ml how much solute, do u have? The answer is 33.333g so now, you have to take the molar mass of NaCl and get the mols. Mass/molar mass, you will get the moles, so 33,3333 g / 58,44 g/m is 0.570 moles. That's M
The relation between vapour pressure , enthalpy of vapourisation and temperature is

ln (88/ 39) = DeltaH / 8.314 (1 / 318 - 1 / 298)
0.814 = DeltaH / 8.314 (2.11 X 10^-4 )
DeltaH = -32.07 kJ
Answer:
2.99×10²⁵ molecules of CO₂ are produced
Explanation:
Decomposition reaction is:
Ca(HCO₃)₂ => CaO(s) + 2CO₂(g) + H₂O(g)
Ratio is 1:2. Let's make a rule of three:
1 mol of bicarbonate can produce 2 moles of CO₂
Therefore, 24.9 moles of bicarbonate may produce, 49.8 moles (24.9 .2 )/1
Let's determine the number of molecules
1 mol has 6.02×10²³ molecules
49.8 moles must have (49.8 . 6.02×10²³) / 1 = 2.99×10²⁵ molecules
Moles of glucose = Molarity x volume solution
= 4.5 x 1.5
= 6.75 moles.
Hope this helps, have a great day ahead!