Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.
<h3>Effect of magnet on Slinky</h3>
If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.
When there is a change in the magnetic field, the reading changes.
At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.
Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.
Learn more about magnetic field here: brainly.com/question/7802337
Because of the pole and the generator you would have to biuld
Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have

here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have

So correct answer will be
B. The current increases.
Let the key is free falling, therefore from equation of motion
.
Take initial velocity, u=0, so
.

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

From above substituting t,
.
Now substituting all the given values and g = 9.8 m/s^2, we get
.
Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.