Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

The gravitational force would get stronger because the farther the two masses are separated the more gravitational force will be used to pull them together the closer they are the less gravitational pull is used to pull them together
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
If a substance absorbs energy but its temperature does not change, then the internal potential energy is changing.
Answer:
see below
Explanation:
You will need t find the volume of the sphere
4/3 pi r^3 divide into the mass
1431 / (4/3 pi (5.8)^3) = 14 gm /cm^3