Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>
Answer:
1) The greatest height attained by the ball equals 20.387 meters.
2) The time it takes for the ball to reach 15 meters approximately equals 1 second.
Explanation:
The greatest height will be attained when the ball stop's in the air and starts falling back to the earth.
thus using third equation of kinematics we obtain the height attained as

where
'v' is the final speed of the ball
'u' is the initial speed of the ball
'a' is the acceleration that the ball is under which in this case equals 9.81 
's' is the distance it covers
Thus for maximum height applying the values in the equation we get

Using the same equation we can find the speed of the ball when it reaches 15 meters of height as

the time it takes to reduce the velocity to this value can be found by first equation of kinematics as

Answer:
It is Gregor Mendel because he was a Catholic Augustinian monk and naturalist
Explanation: