Answer:
<h3><ABC > <DBC.</h3>
Step-by-step explanation:
Given < DBC = < RST and we need to prove < ABC is greater than <RST.
First given statement:
< DBC = < RST
Reason: Given.
Second given statement :
<ABC = <DBC+ <ABD.
Reason: Angle addition theorem.
<em>Note: < ABC is the sum of angles <DBC and <ABD and we have < DBC = < RST. So it's an obvious thing that the sum of angles <DBC and <ABD is always greater than <RST.</em>
Also, <ABC is greater than <DBC.
Therefore, correct option for third statement is :
<h3><ABC > <DBC.</h3>
If a=-10;then:
a+1=-10+1=-9=b
-9>-10
if a=10; then
a+1=10+1=11=b
11>10
A)The pair of values for a and be are: a=-10, then the value of b would be: -9;
And a=10; then the value of b would be:11;
B) It isn´t possible to create a pair of values for a and be, in wich the numerical relationship shown in the given conditional stament is false, therefore b>a if a+1=b
Step-by-step explanation:
x^2 + 10x = -25
x^2 + 10x + 25 = 0
(x+5)^2=0
x=-5
Answer:
I'm pretty sure A but let me know if I'm wrong
If you're using the app, try seeing this answer through your browser: brainly.com/question/3242555——————————
Solve the trigonometric equation:

Restriction for the solution:

Square both sides of
(i):

![\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5Ccdot%20%281-sin%5E2%5C%2Cx%29-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2-2%5C%2Csin%5E2%5C%2Cx-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B-%5C%2C%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2Cx%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D)
Let

So the equation becomes

Solving the quadratic equation:



You can discard the negative value for
t. So the solution for
(ii) is

Substitute back for
t = sin x. Remember the restriction for
x:

where
k is an integer.
I hope this helps. =)