B) 7/10
It is B because there are 7 out of 10 possibilities that you would get a number greater than 7 or an odd number.
Answer:
The answer is below
Step-by-step explanation:
The horizontal asymptote of a function f(x) is gotten by finding the limit as x ⇒ ∞ or x ⇒ -∞. If the limit gives you a finite value, then your asymptote is at that point.
![\lim_{x \to \infty} f(x)=A\\\\or\\\\ \lim_{x \to -\infty} f(x)=A\\\\where\ A\ is\ a\ finite\ value.\\\\Given\ that \ f(x) =25000(1+0.025)^x\\\\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} [25000(1+0.025)^x]= \lim_{x \to \infty} [25000(1.025)^x]\\=25000 \lim_{x \to \infty} [(1.025)^x]=25000(\infty)=\infty\\\\ \lim_{x \to -\infty} f(x)= \lim_{x \to -\infty} [25000(1+0.025)^x]= \lim_{x \to -\infty} [25000(1.025)^x]\\=25000 \lim_{x \to -\infty} [(1.025)^x]=25000(0)=0\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cor%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cwhere%5C%20A%5C%20is%5C%20a%5C%20finite%5C%20value.%5C%5C%5C%5CGiven%5C%20that%20%5C%20f%28x%29%20%3D25000%281%2B0.025%29%5Ex%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%28%5Cinfty%29%3D%5Cinfty%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%280%29%3D0%5C%5C%5C%5C)

Answer:
The component form of the vector P'P is 
Step-by-step explanation:
The component form of the vector that translates P(4, 5) to P'(-3, 7), is given as follows;
The x-component of the vector = The difference in the x-values of the point P' and the point P = -3 - 4 = -7
The y-component of the vector = The difference in the y-values of the point P' and the point P = 7 - 5 = 2
The component form of the vector P'P = 
If we assume that point C is somewhere on segment AD, then,
AD = AC + CD
AD = (9x-12) + (4x+18)
AD = (9x+4x) + (-12+18)
AD = 13x+6 is the answer