Answer:
The probability of observing a sample mean of x = 52 or greater from a sample size of 25 is 0.0000026
Step-by-step explanation:
Mean = 
Population standard deviation =
Sample size = n =25
Sample mean = 
We are supposed to find the probability of observing a sample mean of x = 52 or greater from a sample size of 25 i.e.

Z=5.83
P(Z<52)=0.9999974

Hence the probability of observing a sample mean of x = 52 or greater from a sample size of 25 is 0.0000026
Equation Form:
w x 2
19
Divide both sides by 2:
w
9.5
So, w must be equal to or greater than 9.5 for this equation to work.
The answer to the problem is x=2
Answer: Option 2 is the answer
Step-by-step explanation:
Master data management (MDM) is the practice of gathering data and ensuring that it is uniform, accurate, consistent, and complete, including such entities as customers, suppliers, products, sales, employees, and other critical entities that are commonly integrated across organizational systems.
It seems like the details of what p and q <em>are </em>in this context aren't all that important; it's the logical structure of the statement "p⇒q" we need to look at. We read that logical statement as "p implies q," where p is our <em>hypothesis</em> and q is our <em>conclusion</em>. When we take the converse of a logical statement, we reverse the hypothesis and the conclusion. In this case, <em>p </em>wouldn't imply <em>q</em>, but <em>q </em>would imply <em>p</em> in the converse of p⇒q. We'd write this statement as:
q⇒p