Initial speed = 2√10 m/s
<h3>Further explanation </h3>
Linear motion consists of 2: constant velocity motion with constant velocity and uniformly accelerated motion with constant acceleration
An equation of uniformly accelerated motion
V = vo + at
Vt² = vo² + 2a (x-xo)
x = distance on t
vo / vi = initial speed
vt / vf = speed on t / final speed
a = acceleration
vf=20 m/s
d = 60 m
a = 3 m/s²

Answer:
A. potential energy is 258720 Joule
Explanation:
A.Gravitational potential energy is: PE = m × g × h
velocity = 15.33 m/s when the car reaches the bottom of the hill.
where, m = mass
g = acceleration due to gravity
h = height from the bottom of hill.
The potential energy is : m×g×h
=(2200×9.8×12)
=258720 Joule
B. at the bottom of the hill, the potential energy is converted into kinetic energy so PE at top = KE at bottom
kinetic energy=
(
)
where v = velocity
m= mass
therefore, v=
or, v=
or, v=15.33 m/s
Answer:
The car has velocity and acceleration but is not decelerating
Explanation:
Since the car is traveling at 25 mph around the curve, it has a tangential velocity. This tangential velocity is constantly changing in direction (so the car could adapt to the curve and not moving forward in a straight line), there should be a centripetal acceleration in play here. This acceleration does not slow down the car so it's not decelerating.