<u>Explanation:</u>
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
In both the formulas, the nature of atoms remains the same but the number differs.
For Example: The molecular formula of oxalic acid is
but the empirical formula of oxalic acid is 
To calculate the molecular formula, we need to find the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

The empirical mass can be calculated from empirical formula and molar mass must be known.
The 2nd energy level can hold a maximum of 8 electrons.
Answer:
9-10 ppm.
0.2-0.4 ppm.
Explanation:
The proton on the aldehyde group will appear at approximately 9-10 ppm whereas the methylene peak on the alcohol is the only peak 0.2-0.4 ppm for either compound. Aldehydes and aromatics are quite distinctive in the Nuclear magnetic resonance (NMR). Aldehydes show up from 9-10 ppm, usually as a small singlet; aromatic protons show up from 6.5-8.5 ppm. NMR spectroscopy is the use of NMR to study the physical, chemical, and biological properties of matter.
It's letter C. When ever you read "breaks down" always think decomposition. When you read that compound get together to form "a single" compound, think synthesis.
Answer:
Explanation:
<u>Manganese (VII) ion (an anion) has the formula MnO₄⁻</u>. A polyatomic ion is an ion that is made up of more than one atom. For example, MnO₄⁻ and NH₄⁺. Since the ion provided in the question is an anion, the polyatomic ion that would react with it will have to be a cation (positively charged).
<u>The polyatomic cation that will react with MnO₄⁻ to form a neutral compound is NH₄⁺ (ammonium ion) to form NH₄MnO₄ (Ammonium permanganate).</u>