B because inner core has metal and it’s solid
Answer:
Explanation:
Did you mean: V = d/t a = (V - Vit Average = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Showing results for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = "-9.81" m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Search instead for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Answer:
Solid:- Particles vibrate in a rigid structure and do not move relative to their neighbors.
Liquid:- It takes the shape of its container but keeps a constant volume.
Gas:- Particles move rapidly and independently of each other.
Plasma:- It is the most common state of matter in the universe.
Explanation:
Solids are one of the three states of matter and, unlike liquids or gases, they have a definite shape that is not easy to change. Different solids have particular properties such as stretch, STRENGTH, or hardness that make them useful for different jobs.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure
Gas is a state of matter that has no fixed shape and no fixed volume. Gases have lower density than other states of matter, such as solids and liquids. When more gas particles enter a container, there is less space for the particles to spread out, and they become compressed. The particles exert more force on the interior volume of the container.
A plasma is a gas that has been energized to the point that some of the electrons break free from, but travel with, their nucleus.
The top one does because there are more and it’s closer
Answer:
<u><em>The correct option is C) the moon takes the same time to rotate and revolve.</em></u>
Explanation:
Scientific experiments have concluded that it takes approximately 23 days for the moon to rotate and also it takes the same duration for the moon to revolve around the Earth. Due to this consistency, the moon appears to be still.
<em>Such synchronization results in the same face of the moon to be directed towards the Earth. Hence, the same craters of the moon will be observed by the scientist every day.</em>
<em></em>
Other options, like option D, is not correct because there will be craters on the other side of the moon too. But as we see the same side of the moon, hence we cannot see the craters present on the other side of the moon.