Answer:
The cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Explanation:
From the question given above, the following data were obtained:
Height to which the target is located = 50 m
Initial velocity (u) = 20 m/s
To know whether or not the cannon ball is able to hit the target, we shall determine the maximum height to which the cannon ball attained. This can be obtained as follow:
Initial velocity (u) = 20 m/s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = 10 m/s²
Maximum height (h) =?
v² = u² – 2gh (since the ball is going against gravity)
0² = 20² – (2 × 10 × h)
0 = 400 – 20h
Collect like terms
0 – 400 = – 20h
– 400 = – 20h
Divide both side by – 20
h = – 400 / – 20
h = 20 m
Thus, the the maximum height to which the cannon ball attained is 20 m.
From the calculations made above, we can conclude that the cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Answer:
rock of mass m is dropped to the ground from a height h. A second rock, with mass 2m, is dropped from the same height. When the second rock strikes the ground, what is its kinetic energy? (a) Twice that of the first rock, (b) four times that of the first rock, (c) same as that of the first rock, (d) half as much as that of the first rock, (e) impossible to determine.
Is there any options or just a type up answer?