Answer:

Explanation:
This problem is approached using Coulomb's law of electrostatic attraction which states that the force F of attraction or repulsion between two point charges,
and
is directly proportional to the product of the charges and inversely proportional to the square of their distance of separation R.

where k is the electrostatic constant.
We can make k the subject of formula as follows;

Since k is a constant, equation (2) implies that the ratio of the product of the of the force and the distance between two charges to the product of charges is a constant. Hence if we alter the charges or their distance of separation and take the same ratio as stated in equation(2) we will get the same result, which is k.
According to the problem, one of the two identical charges was altered from
to
and their distance of separation from
to
, this also made the force between them to change from
to
. Therefore as stated by equation (2), we can write the following;

Therefore;

From equation (4) we now make the new force
the subject of formula as follows;

then cancels out from both side of the equation, hence we obtain the following;

From equation (4) we can now write the following;

This could also be expressed as follows;

Answer:
IDHHHHH
Explanation:
vfdvbggggggggggrhhhhhttttttfdsgt
Answer:
During life activities such as cellular respiration, several chemical reactions take place in the body. These are known as metabolism. These chemical reactions produce waste products such as carbon dioxide, water, salts, urea and uric acid. Accumulation of these wastes beyond a level inside the body is harmful to the body. The excretory organs remove these wastes. This process of removal of metabolic waste from the body is known as excretion.
I can conclude that the aluminum heats up faster then the water, since how they are made up is more different, each has a different compound to it, plus water is more denser<span />