Answer:
17.04 g/mol
Explanation:
Molar Mass of NH₃
we know that
Nitrogen has 14.01 gram/mol
And Hydrogen has 1.01 gram/mol
but we have 3 Hydrogens So we multiply
1.01 by 3 i.e., 3.03
Now, add
14.01
+<u> </u><u>3</u><u>.</u><u>0</u><u>3</u>
17.04
So, The molar mass of ammonia, NH₃ is
17.04 g/mol
<u>-TheUnknown</u><u>Scientist</u>
Answer:
2.86mol/L
Explanation:
Given parameters:
Number of moles of MgCl₂ = 7.15moles
Volume of solution = 2.50L
Unknown:
Molarity of the MgCl₂ solution = ?
Solution:
The molarity of a solution is the number of moles of solute found in a given volume.
Molarity =
Insert the parameters and solve;
Molarity =
= 2.86mol/L
1.0×10^−15/4.2×10^−7=<span>2.3809524e-23 Hoped I helped!</span>
The answer would be c it should be The right answer if I’m wrong I’ll fix it for you
Answer:
- 278.85 J
Explanation:
Given that:
Pressure = 1.1 atm
The initial volume V₁ = 0.0 L
The final volume V₂ = 2.5 L
The work that takes place in a reaction at constant pressure can be expressed by using the equation:
W = P(V₂ - V₁ )
Since the volume of the gas is expanded from 0 to 2.5 L when 1.1 atm pressure is applied. Then, the work can be given by the expression:
W = - P(V₂ - V₁ )
W = -1.1 atm ( 2.5 - 0.0) L
W = -1.1 atm (2.5 L)
W = -2.75 atm L
Recall that:
1 atm L = 101.4 J
Therefore;
-2.75 atm L = ( -2.75 × 101.4 )J
= -278.85 J
Thus, the work required at the chemical reaction when the pressure applied is 1.1 atm = - 278.85 J