Answer:
false
Explanation:
false, only a small percentage of mutations cause genetic disorders—most have no impact on health or development. For example, some mutations alter a gene's DNA sequence but do not change the function of the protein made by the gene.
Answer:
The minimum pressure should be 901.79 kPa
Explanation:
<u>Step 1: </u>Data given
Temperature = 25°C
Molarity of sodium chloride = 0.163 M
Molarity of magnesium sulfate = 0.019 M
<u>Step 2:</u> Calculate osmotic pressure
The formula for the osmotic pressure =
Π=MRT.
⇒ with M = the total molarity of all of the particles in the solution.
⇒ R = gas constant = 0.08206 L*atm/K*mol
⇒ T = the temperature = 25 °C = 298 K
NaCl→ Na+ + Cl-
MgSO4 → Mg^2+ + SO4^2-
M = 2(0.163) + 2(0.019 M)
M = 0.364 M
Π = (0.364 M)(0.08206 atm-L/mol-K)(25 + 273 K)
Π = 8.90 atm
(8.90 atm)(101.325 kPa/atm) = 901.79 kPa
The minimum pressure should be 901.79 kPa
Answer:
0.013%
Yes, it does. The answer agrees with the statement.
Explanation:
Both conformers are in equilibrium, and it can be represented by the equilibrium equation K:
K = [twist-boat]/[chair]
The free energy between them can be calculated by:
ΔG° = -RTlnK
Where R is the gas constant (8.314 J/mol.K), and T is the temperature (25°C + 273 = 298 K).
ΔG° = 5.3 kcal/mol * 4.182 kJ/kcal = 22.165 kJ/mol = 22165 J/mol
22165 = -8.314*298*lnK
-2477.572lnK = 22165
lnK = -8.946
K = 
K = 1.30x10⁻⁴
[twist-boat]/[chair] = 1.30x10⁻⁴
[twist-boat] = 1.30x10⁻⁴[chair]
The percentage of the twist-boat conformer is:
[twist-boat]/([twist-boat] + [chair]) * 100%
1.30x10⁻⁴[chair]/(1.30x10⁻⁴[chair] + [chair]) *100%
0.013%
The statement about the conformers is that the chair conformer is more stable, and because of that is more present. So, the answer agrees with it.
Answer:
The speed of the 60.0 kg skater should be 0.281 m/s
Explanation:
<u>Step 1: </u>Data given
Mass of skater 1 = 45.0 kg
speed of skater 1 = 0.375 m/s
Mass of skater 2 = 60.0 kg
<u>Step 2:</u> Calculate the speed of skater 2
To solve this problem, we will use 'Conservation of momenton'. This means the momentum before the push equals the momentum after.
momentum p = m*v
Momentum p(before) = momentum p(after)
m1*v1 = m2 * v2
⇒ with m1 = mass of skater 1 = 45.0 kg
⇒ with v1 = the velocity of skater 1 = 0.375 m/s
⇒ with m2 = the mass of skater 2 = 60.0 kg
⇒ with v2 = the velocity of skater 2 = TO BE DETERMINED
45.0 * 0.375 = 60.0 * v2
v2 = (45.0*0.375)/60
v2 = 0.281 m/s
The speed of the 60.0 kg skater should be 0.281 m/s