S and S²⁻ do not have the outer subshell fully filled with electrons.
Explanation:
We look at electronic configurations:
Ca 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² - the outer subshell 4s² is fully-filled with electrons
S 1s² 2s² 2p⁶ 3s² 3p⁴ - the outer subshell 3p⁴ is not fully-filled with electrons
Zn²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s⁰ - here the 4s subshell is higher in energy than 3d subshell so will consider 3d¹⁰ the out subshell which is fully-filled with electrons
S²⁻ 1s² 2s² 2p⁶ 3s² 3p² - the outer subshell 3p² is not fully-filled with electrons
Ca²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ - the outer subshell 3p⁶ is fully-filled with electrons
Learn more about:
electron configurations
brainly.com/question/5524513
brainly.com/question/6991243
#learnwithBrainly
Mass fraction has been the mass of an individual element with respect to the compound. The mass fraction of chloride in calcium chlorate is 0.171.
<h3>What is meant by a mass fraction?</h3>
Mass fraction has been defined as the ratio of the masses of the individual elements present in a compound to the total mass of the molecule or compound.
The formula for a mass fraction (w) is given as,
Mass fraction (w) = mass ÷ total mass
Given,
Mass of chlorine = 35.453 grams per mole
The molar mass of calcium chlorate (Ca(ClO₃)₂) = 206.98 grams per mole
Substituting and solving the values above as
w = mass of chlorine ÷ total mass of calcium chlorate
w = 35.453 ÷ 206.98
w = 0.171
Therefore, the mass fraction of Cl in calcium chlorate is 0.171.
Learn more about mass fraction, here:
brainly.com/question/14470971
#SPJ4
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.037 M
<u>Explanation:</u>
We are given:
Initial concentration of HI = 1.0 M
The given chemical equation follows:

<u>Initial:</u> 1.0
<u>At eqllm:</u> 1.0-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.037 M
Hence, the concentration of hydrogen gas at equilibrium is 0.037 M