Answer:
b+6
Problem:
If the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
Step-by-step explanation:
We are given (b+c)/2=8 and d=3b-4.
We are asked to find (c+d)/2 in terms of variable, b.
We need to first solve (b+c)/2=8 for c.
Multiply both sides by 2: b+c=16.
Subtract b on both sides: c=16-b
Now let's plug in c=16-b and d=3b-4 into (c+d)/2:
([16-b]+[3b-4])/2
Combine like terms:
(12+2b)/2
Divide top and bottom by 2:
(6+1b)/1
Multiplicative identity property applied:
(6+b)/1
Anything divided by 1 is that anything:
(6+b)
6+b
b+6
The answer if you need helo with math like this come to me -25
Answer: r = 11
Step-by-step explanation:
We know that the point (-2, r) lies on the graph of:
2*x + y = 7.
Then, if we that point is on the graph of the equation, we can replace the values and we will have:
2*(-2) + r = 7
and now we solve this for r-
-4 + r = 7
r = 7 + 4 = 11
r = 11
Ignore the part about her batting attempts, it is extra. Her winning ratio is 3/12 which is 1/4 simplified and if you do 1/4 or 3/12 you get 0.25 which is the decimal of how many games she won / how many total. To convert 0.25 to percentage multiply it by 100 to get 25% D