Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.
Answer: Potassium Iodide, KI
Explanation:
Flame test colors:
Li+ = Crimson Red
Na+ = Bright Orange-Yellow
K+ = Lilac
Addition of nitric acid and silver nitrate (HNO3 and AgNO3),
Cl- = White precipitate
Br- = Creamy precipitate
I- = Yellow Precipitate
Hope this helps, brainliest would be appreciated :)
Answer:
Volume of the gass will decrease by three times of the original volume
Explanation:
Volume is inversly propotional to the pressure applied on it.
Answer:
pH = 1.33
Explanation:
Because HCl is a strong acid, each mole of HCl will completely dissociate into H⁺ and Cl⁻ species.
Now we calculate the molar concentration (molarity) of H⁺:
- Molarity = moles / volume
(750 mL ⇒ 750 / 1000 = 0.750 L)
- Molarity = 0.035 moles / 0.750 L
Then we calculate the pH of the solution: