The steps to be followed while cleaning volumetric glassware are:
1. Remnants from the previous measurements are wiped off with the help of paper towel.
2. The glassware is then soaked overnight in warm soap solution.
3. Then before rinsing with tap water, the glassware are scrubbed with an appropriate brush.
4. After scrubbing, the glassware is rinsed thoroughly with tap water in order to make sure there are no traces of soap solution.
5. The glassware is then rinsed with de-ionized water and finally with the solution that would be used for the volumetric measurement.
Answer:
The steps with correct mechanism are given below:
C
1) CH₄(g) + Cl(g) → CH₃(g) + HCl(g) : This is a slow step.
The rate is given as: R1 = k₁[CH₄][Cl]
2) CH₃(g) + Cl₂(g) → CH₃Cl(g) + Cl(g): This is a fast step.
The rate is given as: Rate = k₂[CH₃][Cl₂]
∴ CH₄(g) + Cl₂(g) → CH₃Cl(g) + HCl(g)
Here, the slowest step will be the rate-determining step.
Here are some disadvantages, is that nitrogen dioxide is a toxic gas and it can still be harmful when ingested by human, also critics of hydrogen fuel cells argue that although these cells do not emit carbon after burning, they give out nitrogen dioxide and other emissions.
Hope this helps
Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃