Answer:
Therefore the Correct option is First one
SAS, ∠A ≅ ∠C, AB ≅ CB , ∠ABD ≅ ∠CBD
.
Step-by-step explanation:
Given:
∠BDA ≅ ∠BDC
AD ≅ CD
TO Prove
ΔADB ≅ ΔCDB
Proof:
In ΔADB and ΔCDB
AD ≅ CD ....……….{Given}
∠BDA ≅ ∠BDC …………..{Given}
BD ≅ BD ....……….{Reflexive Property}
ΔADB ≅ ΔCDB ….{By Side-Angle-Side Congruence Postulate}
∴ ∠A ≅ ∠C ......{Corresponding Parts of Congruent Triangle are Congruent}
AB ≅ CB ......{Corresponding Parts of Congruent Triangle are Congruent}
∠ABD ≅ ∠CBD {Corresponding Parts of Congruent Triangle are Congruent}
If its 8z+3z=z
add like factors
so 8z=3z=11z
11z=z
Answer:
I can't even read the text
Step-by-step explanation:
;-; so tiny!???
Answer:
the correct answer would be 30
Step-by-step explanation:
because the side of an angle is the side it's pointing at which is BD. BD = a = 30