The magnitude of the electric force on the charge is 5 N.
<h3>Magnitude of force on the charge</h3>
The magnitude of force on the charge is calculated as follows;
F = Eq
where;
- E is electric field
- q is magnitude of the charge
F = 100 N/C x 0.05 C
F = 5 N
Thus, the magnitude of the electric force on the charge is 5 N.
Learn more about electric force here: brainly.com/question/20880591
#SPJ1
Answer:
I think its distance
Explanation:
when measuring how far a p.o art u can use mm
Answer:

Explanation:
Given: The latent heat of fusion for Aluminum is 
mass to be malted m = 0.75 Kg
Energy require to melt E = mL

Therefore, energy required to melt 0.75 Kg aluminum

Answer:
(b) EAST
Explanation:
you can assume that the magnetic field points rightward, that is, in the positive x direction (NORTH). Furthermore, you can assume that the direction of the motion of the electron is in the positive y direction. Hence, you have:

You use the Lorentz formula to known which is the direction of the magnetic force over the electron:

which implies the cross product between the unitary vecors j and i, that is
(WEST)
However, the minus sign of the charge of the electron changes the direction 180°. Hence, the direction is k. That is, to the EAST
Answer:
h = 2.49 [m]
Explanation:
In order to solve this problem we must use the definition of potential energy, which tells us that energy is equal to the product of mass by gravity by height.
The potential energy can be calculated by means of this equation:
Ep = m*g*h
where:
Ep = potential energy = 980 [J]
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s^2]
h = elevation [m]
Now replacing:
980 = 40*9.81*h
h = 2.49 [m]