Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Answer:
if there is no friction in a simple machine, work output and work input are found equal in that machine
Explanation:
Answer:
7 m .
Explanation:
For destructive interference
Path difference = odd multiple of λ /2
Wave length of sound from each of A and B.
= speed / frequency
λ = 334 / 172 = 2 m
λ/2 = 1 m
If I am 1 m away from B , the path difference will be
8 - 1 = 7 m which is odd multiple of 1 or λ /2
So path difference becomes odd multiple of λ /2.
This is the condition of destructive interference.
So one meter is the closest distance which I can remain at so that i can hear destructive interference.
Answer: It would be 12 m/s.
Explanation: It would be this because If you go from rest to sprint it would be 12 m/s. Also, I did this the other day.