1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
2 years ago
11

A model shows a machine that works using electrical fields. What would this machine need for the electrical field to function pr

operly?
Physics
1 answer:
Alex2 years ago
7 0

at least two charged interacting parts

You might be interested in
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
2 years ago
The image shows water passing through a barrier.
zloy xaker [14]

It is diffraction

Explanation:

The opening is the aperture

3 0
3 years ago
Read 2 more answers
A 1.5m long string weighs 0.0020 kg. It is tensioned to 100N. A disturbance travels along it with a wavelength of 1.5m, find:a)
Zigmanuir [339]

Answer:

the propagation velocity of the wave is 274.2 m/s

Explanation:

Given;

length of the string, L = 1.5 m

mass of the string, m = 0.002 kg

Tension of the string, T = 100 N

wavelength, λ = 1.5 m

The propagation velocity of the wave is calculated as;

v = \sqrt{\frac{T}{\mu} } \\\\\mu \ is \ mass \ per \ unit \ length \ of \ the \ string\\\\\mu = \frac{0.002 \ kg}{1.5 \ m} = 0.00133 \ kg/m\\\\v = \sqrt{\frac{100}{0.00133} } \\\\v = 274.2 \ m/s

Therefore, the propagation velocity of the wave is 274.2 m/s

7 0
2 years ago
A hot-air balloon is rising upward with a constant speed of 2.03 m/s. When the balloon is 8.13 m above the ground, the balloonis
HACTEHA [7]
The answer is 4.2s...
7 0
2 years ago
On the surface of the earth the weight of an object is 200 lb. Determine the height of the
siniylev [52]

Answer:

The height of the  object is 5007.4 miles.

Explanation:

Given that,

Weight of object = 200 lb

We need to calculate the value of Gmm_{e}

Using formula of gravitational force

F=\dfrac{Gmm_{e}}{r^2}

Put the value into the formula

200=\dfrac{Gmm_{e}}{(3958.756)^2}

200\times(3958.756)^2=Gmm_{e}

Gmm_{e}=3.134\times10^{9}

We need to calculate the height of the  object

Using formula of gravitational force

F=\dfrac{Gmm_{e}}{r^2}

Put the value into the formula

125=\dfrac{200\times(3958.756)^2}{r^2}

r^2=\dfrac{200\times(3958.756)^2}{125}

r^2=25074798.5

r=\sqrt{25074798.5}

r=5007.4\ miles

Hence. The height of the  object is 5007.4 miles.

7 0
3 years ago
Other questions:
  • A rigid tank whose volume is unknown is divided into two parts by a partition. One side of the tank contains an ideal gas at 927
    14·1 answer
  • Car jack is machine helps people do work by?
    12·2 answers
  • Sandi believes that people who eat at McDonald's are overweight, so she decides to do a naturalistic observation of people who e
    7·1 answer
  • A rope with a mass density of 1 kg/m has one end tied to a vertical support. You hold the other end so that the rope is horizont
    14·1 answer
  • In his novel From the Earth to the Moon (1866), Jules Verne describes a spaceship that is blasted out of 12,000 yards/s. the Col
    14·1 answer
  • The moon Phobos orbits Mars
    11·1 answer
  • Which is an example of current electricity?
    11·1 answer
  • The conduction of heat from hot body to cold body is an example of what thermodynamics process?<br>​
    8·1 answer
  • A ball rolls off a table with a horizontal velocity of 3 m/s. If it takes 0.3 seconds for the ball to reach the floor, how high
    6·1 answer
  • Find the rate constantrif the population doubles in 12 days.b.ifp= 200 initially (whent= 0), what is the population whent= 18 da
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!