For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.
Answer:
As a pendulum moves toward the equilibrium position, velocity increases and acceleration decreases. As the pendulum moves away from the equilibrium position, velocity decreases and acceleration increases.
Explanation:
Using the law of conservation of energy, we know that Em1=Em2.
Em1 (at the highest point) = Eg + Ek, where Ek is 0
Em2 (at the equilibrium point) = Eg +Ek, where Eg is 0
This makes sense. At the highest point, the pendulum is at its maximum height. At this point, however, it stops moving, so its velocity is 0. At the equilibrium point, the pendulum is at its lowest height (i.e. h=0). At this point, however, its moving at its maximum velocity. This velocity is constant, which means that acceleration is 0.
P always P because P is an awkward Dorian letter that can always be trusted
Wavelength = (speed) / (frequency)
Wavelength = (320 m/s) / (300 / sec)
Wavelength = (1 and 1/15) m/s