The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
5
Explanation:
they are all significant All non-zero numbers ARE significant
Answer:
The answer to your question is 25.2 g of acetic acid.
Explanation:
Data
[Acetic acid] = 0.839 M
Volume = 0.5 L
Molecular weight = 60.05 g/mol
Process
1.- Calculate the number of moles of acetic acid
Molarity = moles / volume
-Solve for moles
moles = Molarity x volume
-Substitution
moles = (0.839)(0.5)
-Result
moles = 0.4195
2.- Calculate the mass of acetic acid using proportions and cross multiplications
60.05 g ----------------------- 1 mol
x ----------------------- 0.4195 moles
x = (0.4195 x 60.05) / 1
x = 25.19 g
3.- Conclusion
25.2 g are needed to prepare 0.500 L of Acetic acid 0.839M