Answer:
ΔH3 = 1/2 (629) - ΔH^0
Explanation:
Given data:
Bond energy of H2 = ΔH1 = 436 Kj/mol
Bond energy of Br2 = ΔH2 = 193 Kj/mol
To find:
Let bond energy of HBr = ΔH3 = ?
Equation:
H2 + Br2 → 2HBr
enthalpy of formation of HBr = ΔH1 + ΔH3 - 2(ΔH3)
ΔH^0 = 436 + 193 - 2(ΔH3)
(436 + 193) - ΔH^0 = 2(ΔH3)
ΔH3 = 1/2 (629) - ΔH^0
Convection; heat is trevelling off the pizza in waves
Answer:
0.005404 M
Explanation:

Since you added an excess of sodium carbonate you warrantied that all the
in the sample reacted with it. So we can say that the insoluble lead (II) carbonate
contains all the
ions in the original sample.
The moles of
are:

One mol of
is required to form one mol of
. So, the stoichiometric relationship between them is 1:1.
Knowing this, 0.00054 is also the number of moles of
in the original sample.
So, the concentration of
in the original sample is:

The last answer, neither positive nor negative
No but i am glad i havent