Answer:lanthanides is the answer and here is a picture for proof
Explanation:
Answer:
Nuclear reaction takes place at the nucleus whereas chemical reaction involves valence electrons
Explanation:
Answer:
v = 16.49 m/s
Explanation:
Given that,
Length of the string, l = 1.15 m
The ball makes 137 complete turns each minute.
We know that, 1 turn = 6.28 rad
137 turns = 860.79 rad
1 min = 60 s

We need to find the tangential velocity of the ball. It can be given by

So, the tangential velocity of the ball is 16.49 m/s.
The chalk particles embed themselves into the small pores on the surface.
Although a chalkboard seems smooth to the touch, it is quite rough at the microscopic level, with <em>pores</em> that reach below the surface.
When you drag chalk across the board, friction causes small particles of chalk to rub off onto the surface.
If you leave the markings for a long time, some of the chalk particles will work their way into the pores.
A brush will remove the surface particles, but <em>it will not be able to get at the particles in the pores</em>.
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.