Answer:
51.79g Li₃P.
Explanation:
Li has a molar mass of 6.94 g (since there are 3, you multiply it 3 times) and P has a molar mass of 30.97 g. 6.94(3) + 30.97 = 51.79g.
<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>
Question:
How could you use a model to show the cause-and-effect relationship between Earth's rotation and the apparent motion of the stars across the night sky?
Answer:
Gravity? or density because of the pull from the sun.