Answer:
Explanation:
Ok, so I suppose you meant NaCl. But ok:
So we have the formula moles = grams/MM, where MM is molar mass. The molar mass of NaCl is 58.44 g/mol. That means that 55/58.44 is the number of moles which appears to be 0.94 moles.
<span>The electron configuration of lead is [Xe] 6s2, 4f14, 5d10, 6p2 according to the Aufbau principle.</span>
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
The SI unit of time in seconds
Answer:
See the answer and explanation below , please.
Explanation:
A conjugate base is defined as that formed after an acid donates its proton.
For each article, a continuation of the conjugate bases (highlighted in bold), for dissociation in water:
a) HF + H20 --> F- + H30+
b) H20+ H20 --> OH- + H30+
C)H2PO3- + H20--> HPO3 2- + H30+
d) HSO4- + H20 --> SO4 2- + H30+
E) HCL02 + H20 --> CLO02 - + H30+