1 molecule of C3H7O has 7 atoms of hydrogen (remember that the numbers to the right of each symbol ara subscripts and they indicate the number of atoms of that element in the molecular formula).
Then 5 molecules will have 5 * 7 atoms of hydrogen.
5 * 7 = 35.
Then the answer is that there are 35 atoms of hydrogen in 5 molecules of isopropyl alcohol, C3H7O
Solution :
a). 
This compound is known as sulfur trioxide.
The molecular shape of sulfur trioxide is trigonal planer.
And the bond angle is 120°.
b). 
This compound is known as Nitrous oxide. Here, nitrogen is in the center. There is no lone pair around the nitrogen atom and it forms two sigma bonds with the other two atoms.
It is linear in shape.
The bond angle between them is 180°.
c). 
This compound is known as the Dichloromethane.
The molecular shape of the compound is tetrahedral.
The bond angles is 120°
Answer:
<h3>
Which of the following increases with the increase in the temperature in case of a liquid?</h3><h2>
<em>Va</em><em>pour</em><em> </em><em> </em><em>Pressure</em><em> </em></h2>
Explanation:
When a closed container contains liquid, higher the temperature, higher the evaporation the evaporation will be.
So Vapour Pressure should be the correct answer.
Answer is:
The sun's energy is transferred through the vacuum of space to Earth
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>