0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=5 L
P = 1.05 atm
T = 296 K
Putting value in the given equation:


Moles = 0.216 moles
Hence, 0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer: m= 85.8 g CH2O
Explanation: First step is convert the molecules of CH2O to moles using the Avogadro's Number.
1.72x10²⁴ molecules CH2O x 1 mole CH2O / 6.022x10²³ molecules CH2O
= 2.86 moles CH2O
Next is convert the moles of CH2O to mass using the molar mass of CH2O
2.86 moles CH2O x 30 g CH2O / 1 mole CH2O
= 85.8 g CH2O
Their prey would decrease
Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L