Answer:
C. Graph C
Explanation:
We have a mixture of water and ice.
At 0 °C they are at equilibrium.
water-to-ice rate = ice-to-water rate
Next, we lower the temperature to -3 °C — just slightly below freezing.
The water will slowly turn to ice.
The water-to-ice rate will be slightly faster than the ice-to-water rate.
The purple bar will be slightly higher than the blue bar.
Graph C best represents the relative rates
A. is wrong. The ice-to-water rate is faster, so the water is melting. The temperature is slightly above freezing (say, 3 °C).
B. is wrong. The two rates are equal, so the temperature is 0 °C.
D. is wrong. The water-to-ice rate (freezing) is much greater than the ice-to-water rate, so the temperature is well below freezing( say, -10 °C).
Answer:
B) It will increase.
Explanation:
Solubility tends to increase with an increase in temperature
Answer:
Pyruvic acid: conjugate base
Lactic acid: conjugate base
Explanation:
The ratio of conjugate base to conjugate acid can be found using the Henderson-Hasselbalch equation when the pH and pKa are known.
pH = pKa + log([A⁻]/[HA])
The equation can be rearranged to solve for the ratio:
pH - pKa = log([A⁻]/[HA])
[A⁻]/[HA] = 10^(pH-pKa)
Now we can calculate the ratio for the pyruvic acid:
[A⁻]/[HA] = 10^(pH-pKa) = 10^(7.4 - 2.50) = 79433
[A⁻] = 79433[HA]
There is a much higher concentration of the conjugate base.
Similarly for lactic acid:
[A⁻]/[HA] = 10^(pH-pKa) = 10^(7.4 - 3.86) = 3467
[A⁻] = 3467[HA]
For lactic acid the conjugate base also dominates at pH 7.4
To covert from moles to atoms times the number of moles by Avogadro's Number (6.022×10²³)
4.0 × 6.022×10²³ = 2.4088×10^24