Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
Answer:
V = 57.39 L
Explanation:
Given that,
Temperature, T = 300 K
Pressure, P = 0.987 atm
No. of moles of Ne, n = 2.30 mol
We need to find the volume of Ne. We know that, the ideal gas law is as follows :
PV = nRT
Where
P is pressure and R is gas constant

So, the volume of the Ne is 57.39 L.
Explanation:
is used for making ropes, used for climbing rocks and for making parachutes. Their usage shows that nylon fibres have high tensile strength
Answer:
A
Explanation:
The Charles law states that the volume of an ideal gas increases when temperature is increased under constant pressure. The pressure inside the balloon is always equal to the atmospheric pressure. Therefore answer A demonstrate the Charles law.