The answer to this is 22, confirmed by gradpoint
Answer : The correct option is, (C) 1.1
Solution : Given,
Initial moles of
= 1.0 mole
Initial volume of solution = 1.0 L
First we have to calculate the concentration
.


The given equilibrium reaction is,

Initially c 0
At equilibrium

The expression of
will be,
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

where,
= degree of dissociation = 40 % = 0.4
Now put all the given values in the above expression, we get:



Therefore, the value of equilibrium constant for this reaction is, 1.1
Answer:
The pressure increases.
Explanation:
According to Avogadro's principle, equal volume of gases contains the same number of moles. From the reaction equation, there is a decrease in the total number of moles from reactant to product indicating a decrease in volume (as per Avogadro) and an increase in pressure according to Boyle's Law-Volume is inversely proportional to pressure.
Answer:
A. Chemistry can help a chef understand how to combine different ingredients in a recipe.
Explanation:
Knowing the chemical reactions between ingredients used in cooking helps chefs understand how well different ingredients would react to eachother.
*Im pretty sure this is correct.