Answer:
The formula for the calculation of the magnetic field inside a solenoid is
B = μo*n*I
where
μo: vacuum permeability
n: turns per meter
I: current
The magnetic field inside de solenoid is constant. In the case of a small-radius solenoid inside a large-radius solenoid, the magnetic field inside the small-radius solenoid is the magnetic field generated by itself plus the magnetic field generated by the large-radius solenoid. (The radius of the solenoids does not have to be with the instensity of the magnetic field):
BT = Bs + Bl
Bs: magnetic fiel of the small-radius solenoid
Bl: magnetic fiel of the large-radius solenoid
Hence:
BT = 2*μo*n*I
Explanation:
The balanced chemical equation is given as:
2H₂O₂ → O₂ + 2H₂O
А There are two peroxide molecules on the reactant side.
The statement is correct because the left hand side is the reactant side. We can read the reaction as;
2 molecules of hydrogen peroxide decomposed to given 1 molecule of oxygen gas and 2 molecules of water .
D Mass must be conserved so there are an equal number of molecules in the reactants and products.
E Mass must be conserved so there are an equal number of atoms in the reactants and products.
Since the chemical equation is balanced, choices D and E are correct. The reaction will have equal number of molecules and atoms on both sides of the expression.
They make it so you would exert less force and make things easier to move
Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2
Answer:
Minimum capacitance = 200 μF
Explanation:
From image B attached, we can calculate the current flowing through the capacitors.
Thus;
Since V=IR; I = V/R = 5/500 = 0.01 A
Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V
So minimum capacitance will be determined from;
i(t) = C(dv/dt)
So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]
C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF