Answer:
The compression of the spring is 24.6 cm
Explanation:
magnitude of the charge on the left, q₁ = 4.6 x 10⁻⁷ C
magnitude of the charge on the right, q₂ = 7.5 x 10⁻⁷ C
distance between the two charges, r = 3 cm = 0.03 m
spring constant, k = 14 N/m
The attractive force between the two charges is calculated using Coulomb's law;

The extension of the spring is calculated as follows;
F = kx
x = F/k
x = 3.45 / 14
x = 0.246 m
x = 24.6 cm
The compression of the spring is 24.6 cm
Answer:
19.9 N/m
Explanation:
From the question,
Applying Hook's law
F = Ke.................. Equation 1
Where F = Force on the spring, k = spring constant, e = extension
But the force on the spring is the weight of the mass
Therefore,
mg = ke.................. Equation 2
Where m = mass. g = acceleration due to gravity
make e the subject of the equation
e = mg/e................ Equation 3
Given: m = 455 g = 0.455 kg, e = 22.4 cm = 0.224 m,
Constant: g = 9.8 m/s²
Substitute these values into equation 3
e = (0.455×9.8)/0.224
e = 19.9 N/m
Answer:
a) Acceleration of runner is 1.33 m/s²
b) Acceleration of motorcycle is 2.85 m/s²
c) The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.
Explanation:
t = Time taken
u = Initial velocity = 0
v = Final velocity
s = Displacement
a = Acceleration
Equation of motion

Acceleration of runner is 1.33 m/s²

Acceleration of motorcycle is 2.85 m/s²

The runner moves 2.94 m

The motorcycle moves 84.21 m
The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.
Answer:
I dont really know much but i know that it swallow anything it comes across in space.
Since the two trains are passing in opposite
directions, so this means that their relative velocities will be the sum of the
two trains that is:
<span>
relative velocity = (13 + 28) = 41m/s</span>
<span>
a. The passengers aboard on train B will see that train A is
moving at 41m/sec due east</span>
<span>b. The passengers aboard on train A will see that
train B is moving at 41m/sec due west</span>