Oxygen has Atomic number 8 so all isotopes have 8 protons and 8 electrons.
So the number of neutrons in Oxygen-18 = 18 - 8 = 10.
Option B is the correct one.
Explanation:
Bond Enthalpy : It is defined as amount of energy required to break a the particular bond in there gaseous state. It is also known as bond energy. It units are kJ/mol.
- Breaking of a bond is an Endothermic process (energy absorbed from the surroundings).
- Formation of bond is an Exothermic process (energy is released to the surroundings).
If the average bond enthalpy for a C-H bond is 413 kJ/mol, When the C-H bond breaks in which energy will be required ,which will be an endothermic reaction.
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Decreasing the distance between two objects having a considerable mass would increase the attraction on gravitation. The reverse is true that if you separate or inrease the objects distance would substantially decrease their gravitational attraction. Most object in our planet is held by its gravitational force towards it's center.
Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:

Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v = 
v = 
v = 
v = 
Now,
The angular velocity can be calculated as:

Thus
