Answer:
6.9
Explanation:
I had the same question lol your welcomr if itd not right in sorry
R01= 14.1 Ω
R02= 0.03525Ω
<h3>Calculations and Parameters</h3>
Given:
K= E2/E1 = 120/2400
= 0.5
R1= 0.1 Ω, X1= 0.22Ω
R2= 0.035Ω, X2= 0.012Ω
The equivalence resistance as referred to both primary and secondary,
R01= R1 + R2
= R1 + R2/K2
= 0.1 + (0.035/9(0.05)^2)
= 14.1 Ω
R02= R2 + R1
=R2 + K^2.R1
= 0.035 + (0.05)^2 * 0.1
= 0.03525Ω
Read more about resistance here:
brainly.com/question/17563681
#SPJ1
Answer:
True
Explanation:
For point in xz plane the stress tensor is given by![\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DDx_%7B%7D%20%26txz%5C%5Ctzx%26Dz%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where Dx is the direct stress along x ; Dz is direct stress along z ; tzx and txz are the shear stress components
We know that the stress tensor matrix is symmetrical which means that tzx = txz ( obtained by moment equlibrium )
thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane
Answer:I don’t know this one
Explanation: