Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>
Answer:
Relative density = 0.7 or 70%
Explanation:
The following information was provided by this question
Pd = 1.72mg/mg³
Pd max = 1.81 mg/mg³
Pd min = 1.54 mg/mg³
We substitute into the formula. This formula is contained in the attachment.
[(1/1.54)-(1/1.72)]/[1/1.54 - 1/1.81]
= 0.649350 - 0.581395 / 0.649350 - 0.552486
= 0.067955/0.096864
= 0.7015
= 0.7
The relative density is Therefore 0.7 or 70% when converted to percentage
For the general public, the main impact is the cost of living. The economy has a direct impact on our spending ability. An economic recession generally leads to an increased cost of living. ... The countries currency is also generally affected during a recession, which contributes to inflation of prices.
Answer:
The strength coefficient is
and the strain-hardening exponent is 
Explanation:
Given the true strain is 0.12 at 250 MPa stress.
Also, at 350 MPa the strain is 0.26.
We need to find
and the
.

We will plug the values in the formula.

We will solve these equation.
plug this value in 

Taking a natural log both sides we get.

Now, we will find value of 

So, the strength coefficient is
and the strain-hardening exponent is
.