1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
2 years ago
11

What is the value of x on number 3?

Mathematics
2 answers:
hichkok12 [17]2 years ago
6 0
So if the denominator of the problem on the left of the equal sign is 4 that means the numerator has to equal to 2 because 2/4 simplified is 1/2. To get 2 on the top you need to see what times 3 equils 2 which is .66 repeated. Then x would equip 8.66 repeated
Murljashka [212]2 years ago
5 0
The answer is c, 26/3
You might be interested in
Can somebody explain how these would be done? The selected answer is incorrect, and I was told "Nice try...express the product b
trapecia [35]

Answer:

Solution ( Second Attachment ) : - 2.017 + 0.656i

Solution ( First Attachment ) : 16.140 - 5.244i

Step-by-step explanation:

Second Attachment : The quotient of the two expressions would be the following,

6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi \:}{5}\right)\right] ÷ 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right]

So if we want to determine this expression in standard complex form, we can first convert it into trigonometric form, then apply trivial identities. Either that, or we can straight away apply the following identities and substitute,

( 1 ) cos(x) = sin(π / 2 - x)

( 2 ) sin(x) = cos(π / 2 - x)

If cos(x) = sin(π / 2 - x), then cos(2π / 5) = sin(π / 2 - 2π / 5) = sin(π / 10). Respectively sin(2π / 5) = cos(π / 2 - 2π / 5) = cos(π / 10). Let's simplify sin(π / 10) and cos(π / 10) with two more identities,

( 1 ) \cos \left(\frac{x}{2}\right)=\sqrt{\frac{1+\cos \left(x\right)}{2}}

( 2 ) \sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos \left(x\right)}{2}}

These two identities makes sin(π / 10) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, and cos(π / 10) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}.

Therefore cos(2π / 5) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, and sin(2π / 5) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}. Substitute,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right]

Remember that cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting those values,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[0-i\right]

And now simplify this expression to receive our answer,

6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right] ÷ 2\sqrt{2}\left[0-i\right] = -\frac{3\sqrt{5+\sqrt{5}}}{4}+\frac{3\sqrt{3-\sqrt{5}}}{4}i,

-\frac{3\sqrt{5+\sqrt{5}}}{4} = -2.01749\dots and \:\frac{3\sqrt{3-\sqrt{5}}}{4} = 0.65552\dots

= -2.01749+0.65552i

As you can see our solution is option c. - 2.01749 was rounded to - 2.017, and 0.65552 was rounded to 0.656.

________________________________________

First Attachment : We know from the previous problem that cos(2π / 5) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}, sin(2π / 5) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}, cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting we receive a simplified expression,

6\sqrt{5+\sqrt{5}}-6i\sqrt{3-\sqrt{5}}

We know that 6\sqrt{5+\sqrt{5}} = 16.13996\dots and -\:6\sqrt{3-\sqrt{5}} = -5.24419\dots . Therefore,

Solution : 16.13996 - 5.24419i

Which rounds to about option b.

7 0
3 years ago
SoMeonE plZ hAlp me lol
jeka94

C.√93


A=17

B=14

...........................

3 0
2 years ago
Find csc(angle) if tan(angle) = -4/3 and sin(angle) is positive.
Lerok [7]

Answer:

hm?

Step-by-step explanation:

hm

7 0
3 years ago
Wh as t is a prime numbers​
Alexeev081 [22]

A prime number is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers

Step-by-step explanation:

8 0
3 years ago
4. Andrés desea embaldosar el piso de su casa que tiene 375 cm de ancho y 435 cm de largo. Calcula la longitud del lado que tend
svetlana [45]

Answer:

Sabemos que el piso es un rectángulo de 435 cm de largo y 375 cm de ancho.

Recordar que para un rectángulo de largo L, y ancho W, el área es:

A = L*W

Entonces el área del piso, será:

A = 435cm*375cm = 163,125 cm^2

Primero, sabemos que se utilizaran baldosas (las cuales son cuadradas) y queremos saber la longitud de lado que tendrían las baldosas.

No tenemos ningún criterio para encontrar este lado, solo que (si queremos usar un número entero de baldosas) el largo L del lado de la baldosa deberá ser un divisor de tanto el ancho como el largo del suelo.

Dicho de otra forma

el largo, 435cm, tiene que ser múltiplo de L

el ancho, 375cm, tiene que ser múltiplo de L.

Por ejemplo, ambos números son múltiplos de 5, entonces podríamos tomar L = 5cm

En este caso, el área de cada baldosa es:

a = L^2 = 5cm*5cm = 25cm^2

Y el número total de baldosas que necesitaría usar esta dado por el cociente entre el área del suelo y el area de cada baldosa.

N = ( 163,125 cm^2)/(25cm^2) = 6,525 baldosas.

También sabemos que ambos números (435cm y 375cm) son múltiplos de 15cm

Entonces las baldosas podrían tener 15cm de lado.

En este caso, el área de cada baldosa es:

A = (15cm)^2 = 225cm

En este caso el número total de baldosas necesarias será:

N =  ( 163,125 cm^2)/(225cm^2) = 725 baldosas.

5 0
3 years ago
Other questions:
  • Please help me<br><br><br><br>The question has 7 marks so please give 7 valid reasons
    10·1 answer
  • NEED HELP ASAP!! PLEASE HELP!
    5·1 answer
  • What is the solution to the inequality 12&lt;8+x
    8·1 answer
  • Miles Emilia Ran Each
    15·2 answers
  • Solve.
    8·2 answers
  • Six oranges cost 5.34 how much does it cost for one orange
    12·1 answer
  • Betty draws cards randomly from a box containing 8 cards of the same shape and size. There is 2 red cards, 3 blue cards, and 3 y
    10·1 answer
  • A sofa is on sale for 20% off. The original price is $799. What is the sale price?
    5·1 answer
  • For x = -2, evaluate f(g(x)) - f(0), given that: f(x) = 2x + 5 g(x) = 4x​
    13·1 answer
  • (-10) – 48 – (-27)<br> Can someone help me?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!