Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
Because the heat of the plate will be releases warming up the air making it move faster
<h3><u>Answer</u>;</h3>
Groups 14 and 15 each contain metals, nonmetals, and metalloids while Group 13 contains metals and a metalloid, and Group 16 contains metalloids and nonmetals.
<h3><u>Explanation;</u></h3>
- Groups 13–16 of the periodic table contain one or more metalloids, in addition to metals, nonmetals, or both.
- Unlike other groups of the periodic table, which contain elements in one class, groups 13–16 referred to as mixed groups contain elements in at least two different classes. In addition to metalloids, they also contain metals, nonmetals, or both.
- <em><u>Group 14 also known as the carbon group contains carbon which is a non metal, silicon and germanium which are metalloids and tin and lead which are metals.</u></em>
- <em><u>Group 15 also known as the Nitrogen group contains non metals such as oxygen, metalloid tellurium and a metal polonium.</u></em>
There are 2 Nitrogen atoms (or parts) of Nitrogen on the left side of the equation, and 2 Hydrogen, and only one Nitrogen but three Hydrogen on the other side. Where did the extra Nitrogen go? Where did that Hydrogen come from? The answer is Stoichiometry.
N2 + H2 --> NH3 has to be balanced, so we add coefficients to the reactants and products, which indicate in what ratio they are consumed in the reaction. They effectively multiply the subscripts on the elements.
To balance Nitrogen, we have to add a 2 to the front of NH3, so we get 2NH3. Nitrogen is balanced, but Hydrogen isn't. There are now 6 Hydrogen being produced by the reaction, so we can add a 3 to the products side, making 3H2.
Now we have N2 + 3H2 --> 2NH3, and everything is balanced.
The ratio is 2:6, or 1:3