The average atomic mass of an element can be determined by multiplying the individual masses of the isotopes with their respective relative abundances, and adding them.
Average atomic mass of Br = 158 amu(0.2569) + 160 amu(0.4999) + 162 amu(0.2431)
Average atomic mass = 159.96 amu
As described in the problem, the relative abundance for Br-79 is 25.69%. This is because 2 atoms of Br is equal to 79*2 = 158 amu. Similarly, the relative abundance of Br-81 is 81*2 = 162, which is 24.31%.
Answer:
ΔG° = 1747.523
Explanation:
The parameters mentioned are;
Gibbs Free energy ΔG°
Equilibrium constant Kc
Temperature T = 37 + 273 = 310 (upon conversion to kelvin temperature)
The formular relating all three parameters is given as;
ΔG° = -RTlnKc
Where; R = rate constant = 8.314 J⋅K−1⋅mol−1
Upon solving;
ΔG° = - 8.314 * 310 * ln(1.97)
ΔG° = 1747.523
If you go backwards two elements, you will find Neon (Ne). If you go forwards six, you will find Argon (Ar). so the closest will be neon
Tc is Technetium, and it has an atomic number of 43. Its atomic configuration is [Kr] 5s(1) 4d(5) [I'm on my phone so I can't do numbers on shoulders, pretend that 1 and 5 are on the s and d's shoulder]
The outside most ring is the 4d(5), and the d orbital can hold ten electrons.
Valence electrons are electrons, in you could say the outside ring that isn't filled, the extra ones. In this case, there are 5.