Answer:
i think it's B sorry if i'm wrong
Answer:
B.Thermal insulation minimizes energy loses to the atmosphere.
Explanation:
It is important because it helps to stop hit from transferring from the calorimeter to the environment. This would help to have an accurate measurement of the heat that was used in the chemical process. The greatest cause of error that happens in calorimetry is when heat is lost to the environment. To reduce this, you insulate the calorimeter and add a cover.
The liquids so play tank i am just completing my sdgsgr
Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
Answer:
You are looking for expected peaks in absorption spectra founded on structure of desired product, respectively on bound in desired compound. Every bond absorb specific energy from radiation which wavelength match to IR spectrum of light. Result of energy absorption is vibration of bond and bonded atoms (if they are not too heavy).That absorbed energy is seen as a peak in absorption spectra. These peaks are specific for each bound so you need to find peaks that mach to bounds in your desired compound and in that matter you can identify your compound.
In nuclear magnetic resonance you are looking for peaks specific for atoms in your desired compound (H or C atoms). When external magnetic field is applied, atom goes in higher energy state. When atoms goes "relaxing", it releasing energy that mach energy gap from relaxed end excited state. That energy is detected on nuclear magnetic resonance spectra and it depends on neighbor atom so you can determine the position of atoms and identify structure of desired compound.
For better results it is the best to combine these two methods.
Explanation: