Answer:
-1815.4 kJ/mol
Explanation:
Starting with standard enthalpies of formation you can calculate the standard enthalpy for the reaction doing this simple calculation:
∑ n *ΔH formation (products) - ∑ n *ΔH formation (reagents)
This is possible because enthalpy is state function meaning it only deppends on the initial and final state of the system (That's why is also possible to "mix" reactions with Hess Law to determine the enthalpy of a new reaction). Also the enthalpy of formation is the heat required to form the compound from pure elements, then products are just atoms of reagents organized in a different form.
In this case:
ΔH rxn = [(2 * -1675.7) - (3 * -520.0)] kJ/mol = -1815.4 kJ/mol
: If you mean table salt i.e. sodium chloride. It is held together by ionic bonds between sodium (Na+) and chloride (Cl-) ions. The sodium ions have a positive charge and the chlorine ions have a negative charge. Since opposite charges attract, they form ionic bonds. Ionic bonds are nothing more than the attraction between positive and negative ions.
Because it throws the earth off balance and if it does it often enough then it will soon add up.