Answer:
83.33 C
Explanation:
T1 = 111 C, m1 = 2m
T2 = 28 C, m2 = m
c = 0.387 J/gK
Let the final temperature inside the calorimeter of T.
Use the principle of calorimetery
heat lost by hot body = heat gained by cold body
m1 x c x (T1 - T) = m2 x c x (T - T2)
2m x c X (111 - T) = m x c x (T - 28)
2 (111 - T) = (T - 28)
222 - 2T = T - 28
3T = 250
T = 83.33 C
Thus, the final temperature inside calorimeter is 83.33 C.
Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate. The other is a quantity, after maintaining a rate for some time.
-- 'Joule' is a unit of energy. It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.
-- 'Watt' is a <u><em>rate</em></u> of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your <em>power</em> is 40.7 watts.
-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.
-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.
-- 'Kilowatt' is a bigger <em>rate</em> of using energy . . . 1,000 joules per second.
-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .
-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .
Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.
Your potential energy and mass don't tell what your weight is.
If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.
Answer:
greater
Explanation:
the speed of sound in steel is greater than water. the speed of sound in wood is not, In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next. This means that the sound wave travels over four times faster than it would in air, but it takes a lot of energy to start the vibration.
Wood is less dense and force can make a sound.
Answer:
different number of mass numbers.
Explanation:
isotopes are atoms of the same element having the same atomic number but different mass numbers due to different number of neutrons.