Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
Answer;
The temperature change for the second pan will be lower compared to the temperature change of the first pan
Explanation;
-The quantity of heat is given by multiplying mass by specific heat and by temperature change.
That is; Q = mcΔT
This means; the quantity of heat depends on the mass, specific heat capacity of a substance and also the change in temperature.
-Maintaining the same quantity of heat, with another pan of the same mass and greater specific heat capacity would mean that the change in temperature would be much less lower.
Answer:
Resultant displacement = 1222.3 m
Angle is 88.3 degree from +X axis.
Explanation:
A = 550 m north
B = 500 m north east
C = 450 m north west
Write in the vector form
A = 550 j
B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j
C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j
Net displacement is given by
R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j
R = 35.4 i + 1221.8 j
The magnitude is
![R = \sqrt{35.4^{2}+1221.8^{2}}R = 1222.3 m](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%7B35.4%5E%7B2%7D%2B1221.8%5E%7B2%7D%7DR%20%3D%201222.3%20m)
The direction is given by
Answer: A. Work is done on the system and heat is transferred from the system for a net decrease in internal energy.
Explanation:
A refrigerator is a device which dispenses heat from the close system to a warmer area or in the surrounding. By dispensing the heat the internal temperature of the refrigerator drops. The system of refrigerator violates the second law of thermodynamics. As it performs the work to cool the region instead of heating the region. The work is done on the system and the internal energy decreases and the heat energy is liberated to the surrounding area. A refrigerator is an open system.