<span>a. The ball accelerates downward with a force of 80.5 N.
This is a rather badly worded question since the answer depends upon whether or not the impact with the gym ceiling was elastic or non-elastic. With an elastic collision, the ball will accelerate downward with it's original force plus the acceleration due to gravity. With a non-elastic collision (the energy in the ball being used to damage the ceiling of the gym), then the initial energy the ball has would be expended while causing damage to the gym ceiling and then the ball would accelerate downward solely due to the force of gravity. In either case, we need to take into consideration the force of gravity. So multiply the mass of the ball by the gravitational acceleration, giving
F = 0.25 kg * 9.8 m/s^2 = 2.45 kg*m/s^2 = 2.45 N
Since the initial force is 78.0 newtons, let's add them
78.0 N + 2.45 N = 80.45 N
and after rounding to 3 figures, gives 80.5 N
So we have a possible answer of 2.45N or 80.5N depending upon if the collision is elastic or not.
And unfortunately, both possible answers are available.
Since no mention of the ceiling being damaged is made in the question, and to be honest a 100% non-elastic collision is highly unlikely, I will assume the collision is elastic, so the answer is "a".</span>
Answer:
A: all colors, because black is the absence of color.
Explanation:
Answer:
0.75Hz
Explanation:
Given parameters:
Speed of the wave = 3m/s
Wavelength = 4m
Unknown:
Frequency of the wave = ?
Solution:
The speed of a wave is given by the expression below:
Speed = frequency x wavelength
Frequency =
=
= 0.75Hz
Answer:
Magnetic field = 0.534 T
Explanation:
The solving is on the attach document.
1. The problem statement, all variables and given/known data A person jumps from the roof of a house 3.4 meters high. When he strikes the ground below, he bends his knees so that his torso decelerates over an approximate distance of 0.70 meters. If the mass of his torso (excluding legs) is 41 kg. A. Find his velocity just before his feet strike the ground. B. Find the average force exerted on his torso by his legs during deceleration. 2. Relevant equations I can't even seem to figure that part out. Help please? 3. The attempt at a solution I don't know how to start this at all