The average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
From the question, we are to determine the average force on the ball by the racket.
From the formula,

Where F is the force
m is the mass
v is the velocity
and t is the time
From the given information
m = 0.07 kg
v = 56 m/s
t = 0.04 s
Putting the parameters into the formula,
we get


F = 98 N
Hence, the average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
Learn more on calculating force exerted on an object here: brainly.com/question/13590154
The french revolution led to many deaths and impacted history because of the amount of life lost
The electrons making the shock come from the women's body.
<h3>What is Electric shock ?</h3>
When a high voltage current flows through the body, electrical shock results. When someone unintentionally touches an electrical source, this typically occurs. Treatment for both internal and exterior burns may be necessary as part of the aftercare.
The nervous system may be impacted by a shock.
The tissue that makes up nerves presents extremely minimal resistance to the flow of an electric charge. Electric shocks that impact nerves can cause pain, tingling, numbness, weakness, or trouble moving a limb. These effects might disappear with time or remain for good.
How to Prevent from Electrical Shocks –
- Keep the Appliances Away from Moisture and Water.
- Never Connect or Disconnect Under Load.
- Be Careful with Capacitors.
- Use Insulated Tools.
- Turn Off the Power.
- Check for Improper or Faulty Wiring.
- Fix Extension Cord Problems.
to learn more about electric shock go to - brainly.com/question/8822505
#SPJ4
Answer:Coulomb's law states that: The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.
Explanation:Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force
Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J
Solution :
(1) The equation used is,

where,
= final internal energy
= initial internal energy
q = heat energy
w = work done
(2) The known variables are, q, w and 
initial internal energy =
= 2000 J
heat energy = q = 1000 J
work done = w = 500 J
(3) Now plug the numbers into the equation, we get

(4) By solving the terms, we get




(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J