ΔG° at 450. K is -198.86kJ/mol
The following is the relationship between ΔG°, ΔH, and ΔS°:
ΔH-T ΔS = ΔG
where ΔG represents the common Gibbs free energy.
the enthalpy change, ΔH
The temperature in kelvin is T.
Entropy change is ΔS.
ΔG° = -206 kJ/mol
ΔH° equals -220 kJ/mol
T = 298 K
Using the formula, we obtain:
-220kJ/mol -T ΔS° = -206kJ/mol
220 kJ/mol +206 kJ/mol =T ΔS°.
-T ΔS = 14 kJ/mol
for ΔS-14/298
ΔS=0.047 kJ/mol.K
450K for the temperature Completing a formula with values
ΔG° = (450K)(-0.047kJ/mol)-220kJ/mol
ΔG° = -220 kJ/mol + 21.14 kJ/mol.
ΔG°=198.86 kJ/mol
Learn more about ΔG° here:
brainly.com/question/17214066
#SPJ4
Answer:
17.5 g
Explanation:
Given data
- Mass of solution to be prepared: 50.0 grams
- Concentration of the salt solution: 35.0%
The concentration by mass of NaCl in the solution is 35.0%, that is, there are 35.0 grams of sodium chloride per 100 grams of solution. We will use this ratio to find the mass of sodium chloride required to prepare 50.0 grams of a 35.0% salt solution.

Answer : The change in entropy is 
Explanation :
Formula used :

where,
= change in entropy = ?
m = mass of water = 1.00 kg
= heat of vaporization of water = 
T = temperature = 
Now put all the given values in the above formula, we get:


Therefore, the change in entropy is 
Answer:
1.17 mol
Explanation:
Step 1: Write the balanced equation
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂
Step 2: Calculate the moles corresponding to 85.0 g of HCl
The molar mass of HCl is 36.46 g/mol.
85.0 g × 1 mol/36.46 g = 2.33 mol
Step 3: Calculate the number of moles of H₂ produced from 2.33 moles of HCl
The molar ratio of HCl to H₂ is 6:3.
2.33 mol HCl × 3 mol H₂/6 mol H₂ = 1.17 mol H₂
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised