Polynomial function in standard form with zeros 5,-4,1
1 answer:
Answer:
![\boxed{\sf \ \ \ x^3-2x^2-19x+20 \ \ \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%5Csf%20%5C%20%5C%20%5C%20%20x%5E3-2x%5E2-19x%2B20%20%5C%20%5C%20%5C%20%20%7D)
Step-by-step explanation:
hello,
by definition we can write
![(x-5)(x+4)(x-1)](https://tex.z-dn.net/?f=%28x-5%29%28x%2B4%29%28x-1%29)
as 5,-4,1 are the zeroes
now we have to write it in the standard form, let's do it
![(x-5)(x+4)(x-1)=(x^2+4x-5x-20)(x-1)\\=(x^2-x-20)(x-1)=x^3-x^2-20x-x^2+x+20\\=x^3-2x^2-19x+20](https://tex.z-dn.net/?f=%28x-5%29%28x%2B4%29%28x-1%29%3D%28x%5E2%2B4x-5x-20%29%28x-1%29%5C%5C%3D%28x%5E2-x-20%29%28x-1%29%3Dx%5E3-x%5E2-20x-x%5E2%2Bx%2B20%5C%5C%3Dx%5E3-2x%5E2-19x%2B20)
hope this helps
You might be interested in
Answer:
63.71 percent
Step-by-step explanation:
Answer:
845
Step-by-step explanation:
I think that's what it's asking??
How do you want this solved?