Answer:
Betty
Explanation:
Since they're both on the most sequence but Betty is more luminous than Wilma, Betty must be located to a higher place on the most sequence. Therefore, Betty encompasses a hotter surface temperature, is more massive, and encompasses a larger radius. Betty also will evolve faster than Wilma, and if they were formed at the identical time Betty will put off the most sequence first
Answer:
3.64×10⁸ m
3.34×10⁻³ m/s²
Explanation:
Let's define some variables:
M₁ = mass of the Earth
r₁ = r = distance from the Earth's center
M₂ = mass of the moon
r₂ = d − r = distance from the moon's center
d = distance between the Earth and the moon
When the gravitational fields become equal:
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
M₁ / r² = M₂ / (d − r)²
M₁ / r² = M₂ / (d² − 2dr + r²)
M₁ (d² − 2dr + r²) = M₂ r²
M₁d² − 2dM₁ r + M₁ r² = M₂ r²
M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0
d² − 2d r + (1 − M₂/M₁) r² = 0
Solving with quadratic formula:
r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)
When we plug in the values, we get:
r = 3.64×10⁸ m
If the moon wasn't there, the acceleration due to Earth's gravity would be:
g = GM / r²
g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²
g = 3.34×10⁻³ m/s²
What work??? I don’t see anything
Answer:
The stitches and dimples around a baseball and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.
Explanation:
The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.
A smooth ball with no stitches or dimples has more air drag that opposes the motion.
A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.