1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
9

In north america most winter storms form when cold dry air from

Physics
1 answer:
wlad13 [49]3 years ago
7 0

Answer:

Canada moves south

Explanation:

In North America, winter storms usually form when an air mass of cold, dry, Canadian air moves south and interacts with a warm, moist air mass moving north from the Gulf of Mexico at a point called Front.

You might be interested in
Which material is used to reduce friction ?
Iteru [2.4K]

Answer:MOST COMMON METHOD IS USING A LUBRICANT -

A lubricant is a substance, usually organic, introduced to reduce friction between surfaces in ... medical examination. It is mainly used to reduce friction and to contribute to a better and efficient functioning of a mechanism. ... For lubricant base oil use, the vegetable derived materials are preferred

OTHER METHODS-

There are a number of ways to reduce friction:

Make the surfaces smoother. ...

Lubrication is another way to make a surface smoother.

Make the object more streamlined.

Reduce the forces acting on the surfaces.

Reduce the contact between the surfaces.

PLEASE DO MARK ME AS THE BRAINLIEST :)

6 0
3 years ago
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
Kepler's First Law states that the shape of planetary orbits is a/an ________________ ?
harkovskaia [24]

Answer:

elliptical orbit

Explanation:

There are three laws of planetary motion, which are called Kepler's law of planetary motion.

First Law : It states that all the planets revolve around the sun in an elliptical path and the sun is at one focus of that elliptical path.

4 0
3 years ago
You build a grandfather clock, whose timing is based on a pendulum. You measure its period to be 2s on Earth. You then travel wi
Elenna [48]

Answer:

\frac{g_{2}}{g_{1}} = \frac{1}{4}

Explanation:

The period of the simple pendulum is:

T = 2\pi\cdot \sqrt{\frac{l}{g} }

Where:

l - Cord length, in m.

g - Gravity constant, in \frac{m}{s^{2}}.

Given that the same pendulum is test on each planet, the following relation is formed:

T_{1}^{2}\cdot g_{1} = T_{2}^{2}\cdot g_{2}

The ratio of the gravitational constant on planet CornTeen to the gravitational constant on planet Earth is:

\frac{g_{2}}{g_{1}} = \left(\frac{T_{1}}{T_{2}} \right)^{2}

\frac{g_{2}}{g_{1}} = \left(\frac{2\,s}{4\,s} \right)^{2}

\frac{g_{2}}{g_{1}} = \frac{1}{4}

5 0
4 years ago
I NEED HELP ASAP
zzz [600]

Answer:

I believe the answer is C

Explanation:

because centripetal force is generally assosiated with rotation and how fast something spins

3 0
3 years ago
Other questions:
  • Calculate the average orbital speed of Ceres in
    11·1 answer
  • What is the universe's estimated age
    14·1 answer
  • 3. A -4.00-uC charge lies 20.0cm to the right of a 2.00-uC charge on the x axis. What is the force on the 2.00-uC charge?
    13·1 answer
  • What measurement is the quantity of mass per unit volume
    5·2 answers
  • Which statements describe velocity and acceleration? Check all that apply.
    12·2 answers
  • What is an example of a wave that is not mechanical and how is it different?
    9·1 answer
  • The recoil of a cannon is probably familiar to anyone who has watched pirate movies. This is a classic problem in momentum conse
    5·1 answer
  • 2. What is equal to the kinetic energy of a car with a mass of 0.5t (tonne) if it travels
    6·1 answer
  • Physical science-current can be increased by...
    10·2 answers
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!